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1. Project Overview 

The focus of this project was on design methodology for complex real-time, reactive systems 

where a variety of design methodologies and implementation technologies must be combined. Design 

methodologies are encapsulated in one or more models of computation, while implementation technol- 

ogies are implemented as synthesis tools. Applications that use more than one model of computation 

and/or more than one synthesis tool are said to be heterogeneous. Hardware/software codesign is one 

example of heterogeneous design. 

The project developed formal models for such heterogeneous systems, a software environment for 

the design of such systems, and synthesis technologies for implementation of such systems. In the lat- 

ter category, it concentrated on problems not already addressed well elsewhere, such as the synthesis 

of embedded software (code generation, sometimes called auto-coding) and the partitioning and 

scheduling of heterogeneous parallel systems. 

4 of 72 



2. Heterogeneous Design Principles 

2.1 REACTIVE SYSTEMS 

Many traditional computational systems are transformational, in that they transform a body of 

input data into a body of output data. Operating systems and network-aware applications, such as those 

with a client-server architecture, are interactive, in that they interact with the environment, but they 

interact at their own speed. This project was concerned with systems that are reactive, in that they react 

continuously at the speed of the environment. It focused primarily on a subset of such systems, those 

with a large component of signal processing. Such systems are computationally intensive, hard-real- 

time, and typically embedded and concurrent. 

2.2 SYSTEM-LEVEL DESIGN 

By "system-level design" we mean design at the problem level that is relatively unencumbered by 

implementation issues. For signal processing applications, a block-diagram style of specification and 

design is popular, primarily because it matches the applications well. A typical model of a system, 

implemented in Ptolemy, is shown in figure 1. 

Such specifications are modular, in that large designs are composed of smaller designs, and these 

smaller designs encapsulate specialized expertise. They are hierarchical, in that composite designs 

themselves become modules, and modules may be very complicated. They are concurrent, in that 

modules logically operate simultaneously. Implementations may be sequential, parallel, or distributed. 

They are abstract, in that the interaction of modules occurs within a model of computation. They are 

domain specific, tuned in this case to the needs of signal processing applications. Often they will need 

to combine multiple domain-specific subsystems. 

To be successful, system-level design must be coupled with high quality synthesis tools that trans- 

late system-level specifications into implementations. For signal processing, dataflow models of com- 
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putation provide a convenient and popular means for specification. Thus, much of our work focused on 

the syntax and semantics of such specifications and the synthesis of implementations from them. 

2.3 HETEROGENEOUS IMPLEMENTATIONS 

Embedded reactive systems today are typically implemented using a combination of implementa- 

tion technologies, as suggested in figure 2. Custom digital hardware, for example, may be combined 

with analog, microwave, or microelectromechanical systems (MEMS) designs. Hard real-time soft- 

ware, written in assembly code for a specialized processor like a programmable DSP, may be com- 

bined with higher-level software, typically written in C, that implements the control logic of the 
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FIGURE 1. A Ptolemy application, developed by an outside Ptolemy user (Uwe Trautwein of the 
Technical University of Ilmenau, Germany), depicts a beam former that adaptively nulls interferes. It 
is an interactive, animated simulation, where on-screen controls modify the direction of arrival of the 

signal, and uses the higher-order functions and Tcl/Tk scripting capabilities in Ptolemy. 

6 of 72 



application. And of course, hardware and software are combined within the same design. 

Two competing approaches to the design of such systems are the grand unified approach and the 

heterogeneous approach. The grand unified approach seeks to find a common representation language 

for all components, and to develop techniques to synthesize diverse implementations from this repre- 

sentation. The heterogeneous approach uses domain-specific models of computation hierarchically 

mixed and matched to define a system and seeks to find retargettable synthesis techniques from speci- 

fications to diverse implementation technologies. This project pursued the latter approach, and we 

believe that the results demonstrate the validity of the approach. 

The heterogeneous approach has a number of advantages. First and foremost, it is clearly possible, 
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FIGURE 2. Typical hardware architecture for an embedded reactive system with a significant signal 
processing component. The architecture is highly heterogeneous, and its hardware-software combina- 

tion is only one manifestation of this. 
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while there is no clearly usable grand unified approach. In addition, it emphasizes domain specific 

techniques, which match the applications better. Furthermore, because they are more specialized, 

domain-specific techniques are more amenable to high-level synthesis. 

Any particular (known) candidate for a grand unified approach has a number of serious disadvan- 

tages. First, it must, of necessity, impose a model of computation. For example, choosing to use an 

imperative language will impose a sequential model of computation. But any particular model of com- 

putation can greatly affect the chosen system architecture. Using an imperative language, for instance, 

will strongly bias implementations towards software over hardware. On the other hand, using a dis- 

crete-event model of computation, as with structural VHDL, will strongly bias the implementation 

towards hardware over software. If a grand unified approach fails to impose a model of computation, 

then it will have all of the disadvantages of the heterogeneous approach and none of the advantages. 

In the heterogeneous approach, multiple models of computation may be used at the problem level 

(figure 1) and the implementation level (figure 2). The core of the project, therefore, was on the rela- 

tionship between heterogeneous models at these two levels, as suggested in figure 3. This relationship 

consists of a modeling relationship (where a problem-level description is a model of an implementa- 

tion), synthesis (where a problem-level description is translated into an implementation-level descrip- 

tion), and mapping (where modules at one level are related to modules at the other). 

2.4 MODELS OF COMPUTATION 

There are a rich variety of models of computation that deal with concurrency in different ways. In 

this section, we outline some of the most promising models that we uncovered during the course of this 

project. All of these will lend an interpretation, or semantics, to the same bubble-and-arc, or block- 

and-arrow diagram shown in figure 4. 
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2.4.1 Differential Equations 

One possible semantics for the syntax in figure 4 is that of differential equations. The arcs repre- 

sent continuous functions of a continuum that is interpreted as time. The bubbles represent relations 

between these functions. The job of a simulator is to find a fixed-point, i.e., a set of functions that sat- 
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FIGURE 3. The focus of this project was on heterogeneous problem-level modeling, heterogenous 
implementation-level modeling, and the relationship between these levels. 

FIGURE 4. A single syntax (bubble-and-arc or block-and-arrow diagram) 
can have a number of possible semantics (interpretations). 
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isfy all the relations. 

Differential equations are excellent for modeling analog circuits and many physical systems. This 

is the model of computation used in Spice circuit simulators. However, they have disadvantages. Since 

they directly describe a physical system, they are tightly bound to an implementation, leaving few 

implementation options. In addition, they can be expensive to simulate (and hence, expensive to imple- 

ment in software). Thus, differential equations are best used for implementation-level modeling. 

Although at Berkeley we have not created the ability to use differential equations in Ptolemy, 

Hewlett-Packard has recently announced an integration of Ptolemy with their well regarded analog and 

microwave circuit simulators. For more details, see Section 3 "Technology Transfer" on page 18. 

2.4.2 Difference Equations 

Differential equations can be discretized to get difference equations, a commonly used model of 

computation in digital signal processing. This model of computation can be further generalized to sup- 

port multirate difference equations. In either case, a global clock defines the discrete points at which 

signals have values (at the ticks). 

Difference equations are considerably easier to implement in software, and hence leave more free- 

dom of implementation. Thus, they can be used at the problem level. Their key weaknesses are the glo- 

bal synchronization implied by the clock, and the awkwardness of specifying irregularly timed events 

and control logic. 

The synchronous dataflow domain in Ptolemy is used to model difference equations, although it is 

slightly more general, and avoids the global synchronization implied by a pure interpretation of differ- 

ence equations. 

2.4.3 Process Networks and Dataflow 

In a Process Network (PN) model of computation, the arcs represent sequences of data values 
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(tokens), and the bubbles represent functions that map input sequences into output sequences. Certain 

technical restrictions on these functions are necessary to ensure determinacy, meaning that the 

sequences are fully specified. Dataflow models, popular in signal processing, are a special case of pro- 

cess networks [14]. 

PN models are excellent for signal processing. They are loosely coupled, and hence relatively eas- 

ily to parallelize or distribute. They can be implemented efficiently in both software and hardware 

(something demonstrated by this project), and hence leave many implementation options open. Thus, 

they are best used for problem-level specification. 

A key weakness of PN models is that they are awkward for specifying control logic. 

PN models are implemented in Ptolemy using a hierarchy of four nested domains. These are, from 

smallest (least general) to largest (most general): synchronous dataflow (SDF), boolean dataflow 

(BDF), dynamic dataflow (DDF), and process networks (PN). Many improvements in this technology 

were completed under this project, and many of the results have been successfully transferred to indus- 

try. 

2.4.4 Synchronous/reactive Models 

In the Synchronous/Reactive (SR) model of computation, the arcs represent data values that are 

aligned with global clock ticks. Thus, they are discrete signals, as with difference equations, but unlike 

difference equations, a signal need not have a value at every clock tick. The bubbles represent relations 

between input and output values at each tick, and are usually partial functions with certain technical 

restrictions to ensure determinacy. 

SR models are excellent for applications with concurrent and complex control logic. They can be 

realized in the popular Esterel language and certain variants of the Statecharts language. Because of 

the tight synchronization, however, some applications are overspecified in the SR model, limiting the 
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implementation alternatives. Moreover, in most realizations, modularity is compromised by the need to 

seek a global fixed point at each clock tick. 

A key result of this project was to develop a modular SR model of computation and an implemen- 

tation in Ptolemy [74]. This is the first realization of the SR model of computation that mixes cleanly 

with other models of computation, thus allowing the use of SR for control logic in combination with, 

for example, dataflow for signal processing. 

2.4.5 Discrete-Event Models 

In discrete-event (DE) models of computation, the arcs represent sets of events placed in time. An 

event consists of a value and time stamp. This model of computation is popular for specifying hard- 

ware and simulating telecommunications systems, and has been realized in a large number of simula- 

tion environments, simulation languages, and hardware description languages, including VHDL and 

Verilog. Unlike the SR model, there is no global clock tick, but like the SR, differential equations, and 

difference equations, there is globally consistent notion of time. 

DE models are excellent descriptions of concurrent hardware, although increasingly the globally 

consistent notion of time is problematic. In particular, it over-specifies (or over-models) systems where 

maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock 

rates. A key weakness is that it is relatively expensive to implement in software, as evidenced by the 

relatively slow simulators. 

2.4.6 Rendezvous Models 

In a rendezvous model, the arcs represent sequences of atomic exchanges of data between sequen- 

tial processes, where the bubbles represent the processes. "Atomic" means that the two processes are 

simultaneously involved in the exchange. Examples of rendezvous models include Hoare's communi- 

cating sequential processes (CSP) and Milner's calculus of communicating systems (CCS). This model 
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of computation has been realized in a number of concurrent programming languages, including Lotos 

and Occam. 

Rendezvous models are particularly well-matched to applications where resource sharing is a key 

element, for example, client-server database models. A key weakness of rendezvous-based models is 

that maintaining determinacy can be difficult. Proponents of the approach, of course, cite the ability to 

model nondeterminacy as a key strength. We have not (yet) implemented a domain in Ptolemy support- 

ing the rendezvous style of concurrency because it did not seem to match the needs of RASSP well. 

2.4.7 Finite-State Machines 

In FSMs, bubbles represent system state and arcs represent state transitions. This model of com- 

putation is radically different from all the previous ones in that it is not concurrent. Execution is a 

strictly ordered sequence of state transitions. 

FSM models are excellent for control logic in embedded systems, particular safety-critical sys- 

tems. FSM models are amenable to in-depth formal analysis, and thus can be used to avoid surprising 

behavior. Moreover, FSMs are easily mapped to either hardware or software implementations, and thus 

are suitable for use at the problem level. 

FSM models have a number of key weaknesses. First, at a very fundamental level, they are not as 

expressive as the other models of computation described here. They are not sufficiently rich to describe 

all partially recursive functions. However, this weakness is acceptable in light of the formal analysis 

that becomes possible. Many questions about designs are decidable for FSMs and undecidable for 

other models of computation. A second key weakness is that the number of states can get very large 

even in the face of only modest complexity. This makes the models unwieldy. 

The latter problem, however, can be solved by using FSMs in combination with concurrent models 

of computation. This was first noted by David Harel, who introduced that Statecharts formalism, 
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which combines a loose version of SR with FSMs. FSMs have also been combined with differential 

equations, yielding the so-called hybrid systems model of computation. 

A major result of the Ptolemy project has been to show that FSMs can be hierarchically combined 

with all of the concurrent models of computation described above. We call the resulting formalism 

'""charts" (pronounced "starcharts") where the star represents a wild card. This result came fairly late 

in the program, and thus has not been completely implemented in Ptolemy. However, combinations of 

FSM with synchronous dataflow and discrete-event were implemented and released. Part of this work 

was done with additional funding from Lockheed-Martin. 

2.5 CHOOSING MODELS OF COMPUTATION 

The rich variety of available concurrent models of computation outlined in the previous section 

can be daunting to a designer faced with having to select them. Most designers today do not face this 

choice because they get exposed to only one or two. This is changing, however, as the level of abstrac- 

tion and domain-specificity of design software both rise. 

An essential difference between concurrent models of computation is their modeling of time. 

Some are very explicit by taking time to be a real number that advances, and placing events on a time 

line or evolving continuous signals along the time line. Others are more abstract and take time to be 

discrete. Others are still more abstract and take time to be merely a constraint imposed by causality. 

This latter interpretation results in time that is partially ordered, and explains much of the expressive- 

ness in process networks and rendezvous models of computation. Partially ordered time provides a 

mathematical framework for formally analyzing and comparing models of computation. This observa- 

tion has led to some key theoretical results under this project [66]. These results have profoundly 

affected our view of Ptolemy domains and their interrelationships. 

A grand unified approach would seek a concurrent model of computation that serves all purposes. 
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This could be accomplished by creating a melange, a mixture of all of the above, but such a mixture 

would be extremely difficult to use, and synthesis and simulation tools would be difficult to design. 

Another alternative would be to choose one concurrent model of computation, say the rendezvous 

model, and show that all the others are subsumed as special cases. This is easy to do. Most of these 

models of computation are sufficiently expressive to be able to subsume most of the others. However, 

this fails to acknowledge the strengths and weaknesses of each model of computation. 

We believe that a key result of this project is to show that the heterogeneous approach is viable and 

much more promising than the grand unified approach, at least in the near term. This result follows 

from considering the problem of validating designs. Validating designs consists of verifying that cer- 

tain desirable properties are held and that certain undesirable properties are not held. 

Perhaps the most important consideration in choosing a model of computation is the impact that 

the choice has on the quality of the end design. Two key aspects of this quality are its correctness and 

its cost. Let us focus on correctness. The choice of model of computation can strongly affect the ability 

to validate the correctness of a design. 

A number of methods can be used to validate designs. The simplest to use is validation by con- 

struction, where the property to be verified is true of all designs specified within the model of compu- 

tation, so a particular design does not need to be explicitly validated. An example of a property that is 

often verified this way is determinacy, which loosely means that the specification completely describes 

the behavior of a system. A model of computation that yields to this style of validation is intrinsically 

limited in expressiveness, since it cannot describe designs that violate certain properties. 

In practice, few properties can be practically validated by construction. A second choice would be 

formal verification, where a property is verified by either formal manipulation of the syntax of the 

specification or by algorithmic search over possible behaviors. Formal verification, however, has 
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proven practical only with models of computation with rather limited expressiveness, such as finite 

state machines. 

A third choice is to validate designs by simulation, in which a property is shown to hold over a set 

of example inputs. In practice, it is difficult (or often impossible) for the set of example inputs to be 

comprehensive, representing all possible inputs. Thus, this validation method is less reliable than the 

prior methods. 

An alternative to simulation is validation by prototyping, where a representative implementation of 

the system to be validated is built and deployed in a representative environment. This method often 

permits more exhaustive testing, although in practice, the representative environment may fail to repre- 

sent a realizable environment that will cause the system to fail. 

The last resort is validation by intuition. In practice, some combination of intuition, simulation, 

and prototyping is the most common form of validation today. The role of intuition is critical, and 

indeed exploits the considerable strengths of the human abilities of the designers. However, as system 

complexity increases, intuition breaks down. 

The validation methods described are not all equally desirable. In the order given here (by con- 

struction, formal verification, simulation, prototyping, and intuition), we would argue that if a property 

can be verified by a technique earlier in the list, then a designer should always choose to use that 

method over a method later in the list. Thus, the choice of model of computation should be influenced 

by the desire to move validation up the list. 

Validation methods early in the list, however, are more effective if the model of computation is 

more limited in expressiveness. Thus, the desire to work with an expressive and general model of com- 

putation is at odds with the effectiveness of validation. 

A similar argument can be made for synthesis. Effective synthesis requires more restricted models 
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of computation. A familiar form of evidence for this argument is that VHDL has been written using a 

particular style in order for hardware synthesis tools to generate cost-effective designs. The expressive- 

ness of VHDL is excessive from this perspective. While it is possible that this reflects limitations in the 

state of knowledge, we believe that instead it reflects fundamental limitations. Effective synthesis from 

high-level descriptions requires that the high-level descriptions exist within a model of computation 

that has limited expressiveness. 

This intrinsic tension, between expressiveness and validation/synthesis, can only be resolved 

through heterogeneity. Systems must be broken into modules, and these modules must be designed 

within specialized models of computation that match their functionality. This is the key principle 

underlying the Ptolemy project. 
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3. Technology Transfer 

One of the notable successes of this project was its demonstrable transfer of technology to industry 

leaders in the computer-aided design and defense industries. This was accomplished via a careful cul- 

tivation of industry contacts and a strategy of wide open, very liberal distribution of software and pub- 

lications. All software was made available on the Web with the most liberal copyright notice permitted 

by the University of California. This notice retains ownership of the copyright, but expressly grants 

permission to use the software for any purpose, including development of commercial products. It is 

distinctly more liberal than the GNU public license, and thus better represents "free software." 

Two leaders in the CAD industry, Cadence (The Alta Group) and Hewlett-Packard (EEsof Divi- 

sion) made use of this policy to incorporate technology from this project into their CAD frameworks, 

as discussed below. Several smaller companies made use of Ptolemy software, extending it for their 

own purposes, and numerous companies used Ptolemy as an experimental design environment. 

Efforts to further promote technology transfer included the development of a new graduate class at 

Berkeley, the organization of two miniconferences, and the hosting of a visiting scholar from one of 

the leading government labs working in system level design, the group at the Naval Research Labs that 

has developed the processing graph method (PGM), which is closely related to the dataflow technol- 

ogy advanced in the Ptolemy project. 

3.1 CADENCE USES PTOLEMY IN SPW3.5 

On October 23, 1995, The Alta Group of Cadence Design Systems announced SPW 3.5, which 

contains three key technologies from Ptolemy: mixing of discrete-event and dataflow models of com- 

putation, and synchronous and dynamic dataflow scheduling technology. The subtitle of Alta's press 

release is: 
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"New SPW* Simulation Technology for Convergence Applications Leverages Berkeley's 
Ptolemy Project Research" 

In the body of the press release: 

"The new simulation architecture is based on research from the renowned Ptolemy research 
project at the University of California at Berkeley.... [It] utilized the Ptolemy team's results to 
uniquely implement Ptolemy's advanced simulation algorithms in Alta Group's leading SPW 
solution." 

We believe that this interaction with Cadence and others has ensured that the best results of the project 

make their way into self-sustaining commercial products. The full press release is available on the 

Ptolemy Web site. 

3.2 HEWLETT-PACKARD INTEGRATES PTOLEMY WITH ANALOG SIMULATION 

On June 2, 1997, Hewlett-Packard's EEsof Division announced plans to deliver a comprehensive 

digital signal processing (DSP) design system as part of its effort to broaden its solutions for the elec- 

tronic design automation (EDA) industry. In their June 2, 1997, press release, HP EEsof states: 

"Built into the HP DSP Designer software is a new simulation technology developed by merg- 
ing HP research and technology with the University of California at Berkeley Ptolemy project. 
This new simulation engine facilitates cosimulation of time, frequency and data flow technolo- 
gies and significantly expands the DSP development capability for mixed RF/analog/DSP 
communications projects." 

The software is comprised of two new DSP tools - DSP Designer and DSP Synthesis. It is part of HP's 

newly introduced HP Advanced Design System, which includes the latest versions of its highly 

regarded RF and analog circuit simulation technology. The complete press release and a related article 

from EE Times are available on the Ptolemy Web site. 

3.3 LOCKHEED-MARTIN DEVELOPS ARCHITECTURAL TRADE-OFF ANALYSIS TOOL 

Sanders, a Lockheed-Martin company, has been using Ptolemy to develop tools for architectural 

evaluation and trade-off analysis. Their work leverages the SDF and DE domains in Ptolemy, enhanced 

with their own user interface and visualization tools. 
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3.4 BNED EXTENDS PTOLEMY FOR MODELING TELECOMMUNICATION NETWORKS 

We have recently learned about the establishment of a new company in Germany that develops 

products based upon Ptolemy. BNeD, Broadband Network Design, develops and sells products based 

upon Ptolemy for analysis, planning, optimization and testing of next generation telecommunication 

core (optical) and local exchange networks. Their Web page is: 

http ://www.bned.com 

3.5 DQDT USES PTOLEMY VHDL GENERATION FOR ASIC DESIGN 

DQDT, Dimensions in Quick Design Turnaround, derived a new VHDL domain in Ptolemy to 

serve as a front end specification and VHDL code generation environment for behavior modeling and 

synthesis of ASICs. 

3.6 BDTI USES THE PTOLEMY KERNEL TO INTEGRATE OTHER TOOLS 

Berkeley Design Technology Inc. (BDTI) wrote a layer on top of the Ptolemy kernel called 

Ptolemy HSIM (Heterogeneous Simulation) to serve as a simulation backplane that allowed Cadence's 

Signal Processing Workstation (SPW), Cadence's Bones and Precedence's SimMatrix tools to cooper- 

ate during a simulation. (Precedence has since been acquired by Mentor Graphics.) SimMatrix is a 

synchronization mechanism for connecting 30 different VHDL and Verflog simulators together. 

3.7 TECHNOLOGIES LYRE DEVELOPS DSP RAPID PROTOTYPING UNDER PTOLEMY 

Technologies Lyre, in Quebec City, Canada has recently developed a rapid-prototyping DSP devel- 

opment platform that works under Ptolemy and MatLab. Contact Jean-Francois Ouellet, Technologies 

Lyre, aad902@agora.ulaval.ca. 

3.8 PTOLEMY MINICONFERENCES 

We held two miniconferences at Berkeley that reviewed major accomplishments of the Ptolemy 
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project. The objectives of the conference were primarily to report to and solicit advice from the indus- 

trial sponsors and friends of the project. Both miniconferences were held in conjunction with Berke- 

ley's annual Industrial Liaison Program (ILP) conferences, which included two afternoons of 

laboratory demonstrations of Ptolemy software prior to the miniconferences. 

3.8.1 First Ptolemy Miniconference — March 10, 1995 

The First Ptolemy Miniconference drew 50 sponsors and friends of the Ptolemy project from the 

following organizations: 

ARPA/ESTO 
Berkeley Design Technology 
Cadence (the Alta Group) 
Dataflow Systems 
Ericsson 
Hewlett-Packard 
Hitachi 
Hughes Aircraft Company 
Lockheed Sanders 
Mercury Computer Systems 
Mitsubishi 
Motorola (three separate groups) 
NASA 
Rockwell 
Semiconductor Research Corporation (SRC) 
Sony 
Synopsys 
Thomson CSF 
United States Air Force 
UniView Systems 
Westinghouse 
White Eagle Systems Technology 
Wind River Systems 

Presentations at the conference included: 

• An Overview of the Ptolemy Kernel Architecture. 
• Design Methodology Management for System-level Design. 
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• Symbolic Computation in System Simulation and Design. 
• VHDL Code Generation for Simulation and Synthesis. 
• Optimization Issues in Embedded Software Synthesis. 
• Combined Code and Data Memory Minimization. 
• Parallel Implementation. 
• Real-Time Prototyping. 
• Mixing Dataflow with Control. 
• An Introduction to a Mathematical Model of Dataflow. 
• The Process Network Domain. 

3.8.2 Second Ptolemy Miniconference — March 14, 1997 

This miniconference reviewed both this DARPA effort, which was at the stage of wrapping up, and 

future plans and preliminary results under a new DARPA effort entitled "Design of Distributed Adap- 

tive Signal Processing Systems." The conference included several outside speakers reporting on uses 

of Ptolemy software and techniques plus ongoing interactions. We had 58 attendees from the following 

organizations: 

Adaptec 
Advanced Fibre Communications 
Advantest 
Alta Group of Cadence Design Systems 
Angeles Design Systems 
Berkeley Design Technology 
Data Flow Systems 
Ericsson Radio Systems AB 
Hewlett Packard 
Hughes Aircraft 
Hughes Space and Communications 
LG Electronics 
Lockheed-Martin 
Motorola 
National Semiconductor 
NEC 
Nortel 
Rockwell International 
Sanders, a Lockheed Martin Company 
Seiko Epson Corp. 
Semiconductor Research Corporation 
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Seoul National University 
Sony 
Structured Software Systems 
Sun Microsystems 
Synopsys 
Tektronix 
Thomson-CSF 
University of Pittsburg 
University of Texas, Austin 
University of Washington 
White Eagle Systems 

The highlights of the conference included: 

The first public demonstration of hierarchical finite-state machines combined with dataflow and 
discrete-event concurrency models. 
The first public demonstration of a synchronous/reactive modeling environment that supports hier- 
archical heterogeneity. 
The first public demonstration of Tycho, our user-interface development environment, interacting 
with Java and with Ptolemy. 
The first public demonstration of Web-based simulators for programmable DSPs, from UT Austin. 
The first public description of an investment analysis tool from Structured Software Systems, 
based on Ptolemy. 

The miniconference also included descriptions of the use of Ptolemy in modeling free-space optoelec- 

tronic systems (from the University of Pittsburg), a description of Myrnet network simulations in 

Ptolemy (from Sanders), the use of Ptolemy for VHDL-based circuit design, research on multidimen- 

sional signal processing models, and theory that we have developed to help us understand interacting 

models of computation. In addition, we outlined plans for future work including a strategy for support- 

ing fixed-point design and our plans for Java-based design. The proceedings of the conference are at: 

http://ptolemy.eecs.berkeIey.edu/papers/viewgraphs/miniconf97/ 

3.9 PTOLEMY TUTORIAL 

In conjunction with Dave Wilson of Berkeley Design Technology, Mike Williamson, Brian Evans, 

and Edward Lee led a full-day tutorial on Ptolemy at the RASSP conference in Arlington Virginia in 
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1995. Approximately 25 people attended. 

3.10 OTHER DISTRIBUTION MECHANISMS 

SAL (Scientific Applications on Linux) includes Ptolemy version 0.6 on a CD ROM and Web site. 

The URL is: 

http://SAL.KachinaTech.COM/ 

Ptolemy is located at the following URL: 

http://SAL.KachinaTech.C0M/E/l/PTOLEMY.html 

Also, Ptolemy is now listed under Yahoo. The link is: 

http://www.yahoo.com/Science/Computer_Science/ 

Electromc_Computer_Aided_Design ECADJTools/ 

3.11 NEW BOOK: SOFTWARE SYNTHESIS FROM DATAFLOW GRAPHS 

A new book [1] studies the problem of synthesizing software for embedded signal processing sys- 

tems starting from applications expressed as synchronous dataflow (SDF) graphs. After a comprehen- 

sive review of the theory behind SDF, techniques are given to optimize primarily the program memory 

size and secondarily the data memory size. To accomplish this, SDF graphs describing multirate signal 

processing applications are scheduled into nested loops. A formal theory for constructing and manipu- 

lating these loops is developed, and a class of looping structures, called single appearance schedules, is 

shown to be the most efficient with respect to code size. The existence of such structures is studied, 

and algorithms for optimally constructing them are given. Extensive experimental data is presented, 

demonstrating the efficacy of the techniques. 
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3.12 POLIS — A CODESIGN SYSTEM BASED ON PTOLEMY 

The group of Prof. Alberto Sangiovanni-Vincentelli at Berkeley has released a Ptolemy-based co- 

design environment for control-dominated embedded systems, called POLIS. POLIS offers an inte- 

grated interactive environment for specification, cosimulation, formal verification, and synthesis of 

embedded systems implemented as a mix of hardware and software components. It uses and signifi- 

cantly extends the discrete-event (DE) domain in Ptolemy. See: 

http://www-cad.eecs.berkeIey.edu/Respep/Research/hsc/abstract.html 

Cadence is known to be heavily influenced by Polis and may be commercializing it. 

3.13 A NEW GRADUATE CLASS ON MODELING OF SYSTEMS 

We organized a new graduate class, EE290N, "Specification and Modeling of Reactive Real-Time 

Systems." This class incorporated recent results obtained under this project, and is likely to become 

(after further evolution) a regular graduate class. The description of the class follows: 

"This research seminar studies models of computation and programming language semantics 
used for the specification and modeling of real-time and reactive electronic systems. It begins 
with a review of the theory of partially ordered sets, particularly as applied to prefix orders and 
Scott orders. It develops a framework for models of computation for concurrent systems that 
uses partially ordered tags associated with events. Discrete-event models, synchronous/reac- 
tive languages, and dataflow models are studied in this context. Basic issues of Turing com- 
pleteness and lambda computability, boundedness, determinacy, reachability, and liveness are 
studied, with emphasis on decidability and efficiency of verification and synthesis algorithms. 
Classes of functions over partial orders, including continuous, monotonic, stable, and sequen- 
tial functions are considered. A hierarchy of increasingly specialized asynchronous models, 
including process networks, Kahn process networks, dataflow process networks, the Boolean 
dataflow model, and the synchronous dataflow are covered. Timed models, including discrete- 
event systems (as embodied for example in the VHDL and Verflog languages) and the syn- 
chronous/reactive languages Signal, Lustre, Esterel, and Statecharts are studied. Throughout, 
applications to signal processing, real-time, and reactive systems are emphasized, as are syn- 
thesis and compilation techniques amenable to such modern approaches as embedded system 
design, hardware/software codesign and formal verification." 

An early version of this class was reported in [43]. More information about the most recent version of 

the class can be found at its Web site: 
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http://www.eecs.berkeley.edu/~eal/ee290n/ 

3.14 EMBEDDED SOFTWARE SYSTEMS CLASS AT UT AUSTIN 

Professor Brian Evans, formerly a postdoc under this project at Berkeley, introduced a new course 

at UT Austin entitled "Embedded Software Systems" that is based on the system-level design issues 

tackled under this project. The course uses Ptolemy for demonstrations, homework exercises, and stu- 

dent projects, leverages material from the graduate class described in the previous subsection, and uses 

the book that summarizes many of the results of this project [1]. It its most recent offering, the course 

featured two guest speakers from the Ptolemy project (Praveen Murthy and Stephen Edwards). All 

notes, handounts, demonstrations, etc., from the class are online at 

http://www.ece.utexas.edu/~bevans/courses/ee382c/ 
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4. Summary of Accomplishments 

The major accomplishments of the project are summarized in this section. Concrete deliverables 

included monthly and annual reports, Ptolemy software, major demonstrable technology transfer, and 

86 publications, the vast majority of which have been posted on the World Wide Web. The publications 

consist of one book, one chapter, 14 journal articles, 41 conference papers, 6 Ph.D. theses, 6 masters 

reports, and 3 newsletter articles. For greater detail than in this report, refer to the publications and 

software at the Ptolemy Web site, 

http://ptolemy.eecs.berkeley.edu/ 

4.1 SYSTEM-LEVEL DESIGN 

System-level design in Ptolemy is concerned with issues of mapping problem-level specifications 

into implementations. This includes hardware/software partitioning, cosimulation, and more generally, 

heterogeneous simulation. It is also concerned with coupling problem-level specifications with hard- 

ware synthesis tools, including VHDL-based tools and more experimental high-level synthesis tools. It 

is also concerned with the manipulation of design specifications for optimization and the semantics of 

the problem-level specification languages. 

4.1.1 Hardware/Software Partitioning 

We developed and implemented a sophisticated hardware/software partitioning algorithm. This 

algorithm supports selection from among multiple implementations within the hardware or software 

categories. The area of a node implemented in hardware depends on the time allocated to run it. In our 

early partitioning work we assumed the hardware to be executed in the critical time (i.e., best case, cor- 

responding to the largest area) and made a binary choice for each node, choosing either hardware or 

software. More recent techniques select the appropriate implementation for a node, given its area-time 

curve, rather than just deciding whether it is in hardware or software. Thus, instead of only solving the 
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binary hardware/software partitioning problem, we solve the m-ary problem of partitioning into m 

implementation styles. 

The m-axy algorithm used the binary algorithm as the core. Experiments yielded impressive 

results. The algorithm has complexity 0(nA3), where n is the number of nodes. For an eight-node 

example, the optimal solution using integer linear programming required 3.5 hours. Our algorithm got 

close to this optimal solution and completed in 3 minutes. This work is reported in the Ph.D. thesis of 

Asawaree Kalavade [75]. 

4.1.2 Synthesis ofVHDL From Dataflow Graphs 

We designed a mechanism for the synthesis of VHDL from dataflow graphs. This mechanism can 

generate any of several different styles of VHDL code, customizing the code to optimize for synthesis 

by various back-end tools, or to optimize for simulation. For simulation, sequential VHDL is usually 

fastest. For synthesis, structural VHDL is usually most effective. We have demonstrated the translation 

of dataflow graphs into VHDL suitable for synthesis by the Design Compiler from Synopsys as well as 

rapid simulation using simulators from Synopsys and Model Technology. We completed a demonstra- 

tion of a scalable beam-forming application in the retargettable VHDL domain. This uses higher-order 

functions (see below) to control the number of sensors. The application also has multiple sample rates. 

When the code generator is set to generate sequential VHDL, simulations ran reasonably quickly. This 

work will be reported in the forthcoming Ph.D. thesis of Michael Williamson. 

4.1.3 Partitioning SDF Applications Into Multiple VHDL Hardware Modules 

We developed a method for the partitioning of a single application specified in synchronous data- 

flow (SDF) into multiple independently-synthesizable, communicating VHDL hardware modules. 

Either self-timed (asynchronous) or fully-static (synchronous) hardware implementations are allowed, 

and the clock timing and control are automatically generated. We showed that this method guarantees 
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the preservation of correct functional behavior as specified in the original SDF graph, and that many 

choices of partitioning into multiple hardware modules are possible. The ability to break up a larger 

application into smaller synthesizable hardware modules can lead to efficiencies in hardware synthesis, 

which is faster when performed on smaller VHDL specifications. At the same time, the communica- 

tion between the multiple modules is sufficiently specified by the method so as to ensure that the cor- 

rect functional behavior is preserved when the separate modules are executed concurrently. This work 

will be reported in the forthcoming Ph.D. thesis of Michael Williamson. 

4.1.4 VHDL-Based Hardware Design Mixed With Software and Environment Modeling 

Typical systems today mix custom hardware with embedded software. Effective system-level sim- 

ulation mandates inclusion of both, and in addition, a model of the environment. The principle in the 

Ptolemy project is to use specification, modeling, and simulation techniques that are best suited for 

each aspect of the design, and to mix them into a coherent whole. Thus, hardware is modeled in 

VHDL, embedded software in C or assembly code, and the environment at a higher, functional level. 

Using our hierarchical scheduling framework (see below), we were able to get VHDL simulations 

to interact with Ptolemy simulations in the SDF domain (synchronous dataflow) and, more interest- 

ingly, to interact with synthesized embedded software running in C on the host processor or in assem- 

bly code on a Motorola DSP. The first demonstration system is an analysis/synthesis filter bank in 

which the signal stimulus and analysis of the results are done in the CGC (code generation in C) 

domain, the analysis half of the filter bank is done on a Motorola DSP56002, and the synthesis half of 

the filter bank is done in the Synopsys VHDL simulator. Both the DSP and the VHDL simulator are 

running code generated by Ptolemy from dataflow graphs. We believe that this is a major milestone in 

heterogeneous system-level design. This work is reported in [55]. 
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4.1.5 Structural VHDL 

We created two VHDL code-generation domains, called VHDLF and VHDLB. The first of these 

uses homogeneous synchronous dataflow semantics to describe signal processing systems at a func- 

tional level. The second uses event-driven semantics to describe arbitrary systems at the behavioral 

level. These domains were used successfully already in industry, by a startup company called DQDT 

(Dimensions in Quick Design Turnaround). VHDLF has been supplanted, however, by the more 

sophisticated VHDL domain described above. 

4.1.6 Silage Interface to Hyper High-Level Synthesis Tool 

We created a Silage domain that couples to Prof. Rabaey's high-level synthesis tool called Hyper. 

This domain was used for the hardware side of the hardware/software partitioning experiments con- 

ducted by Asawaree Kalavade [75]. We did not keep up this domain since Silage showed no promise of 

catching on as a design language. 

4.1.7 Heterogeneous Simulation 

With help from Prof. Soonhoi Ha of Seoul National University, Korea, we developed a clean inter- 

action semantics for combined synchronous dataflow and discrete-event modeling. This semantics 

allows us to build arbitrarily deeply nested mixed systems while maintaining a consistent and intuitive 

notion of global time. This is challenging because the synchronous dataflow (SDF) domain has no 

notion of time in the conventional sense, using instead has a partially ordered notion of causality. The 

model we are following is that the dataflow domains appear to any timed domain to fire "instanta- 

neously." That is, they produce outputs with the same time stamps as the inputs. If they are multirate 

systems, then they may optionally also produce additional events with time stamps in the future, under 

the control of a target parameter. The changes that were required in the software included modifica- 

tions to the DE schedulers to prevent them from advancing their notion of time beyond their requested 
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stopping time. In addition, the SDF wormhole object had to explicitly handle time stamps in order to 

define its multirate behavior. We have built a number of demonstration systems that illustrate this inter- 

action. This work is reported in [9]. 

4.1.8 Automated Rearrangement of Signal Processing Systems 

We developed and released a set of heuristic search techniques written in the Mathematica pro- 

gramming language. They implement breadth-first search, depth-first search, hill climbing, and simu- 

lated annealing techniques for applying a set of equivalence relationships to an algebraic expression to 

minimize implementation cost. One goal was to use the heuristic searches to apply the equivalence 

relationships in the Signal Processing Packages for Mathematica to optimize the implementations of 

Ptolemy systems. Both the Heuristic Search Packages and the Signal Processing Packages are avail- 

able on the Ptolemy Web site. 

4.1.9 Signal Reprocessing 

We collaborated with the Boston University/MIT RASSP team on signal reprocessing in Ptolemy. 

Signal reprocessing is where, based on the output of a signal processing operation, you adjust the 

parameters in the operation and process the same data again to obtain a "better" result. Adaptive filter- 

ing is an example. A more complicated example concerns estimating two sinusoids of unknown spac- 

ing. One way is to use the FFT and adjust the FFT length until the sinusoids are resolved (separated). 

There are a number of ways to provide a general framework for reprocessing signals using the het- 

erogeneity supported in Ptolemy. In Ptolemy, we can define an outer reprocessing system (galaxy) that 

decides how to change the processing parameters in the inner dataflow subsystems (galaxies). Before 

firing the inner dataflow galaxies, the reprocessing galaxy would reset the parameters of the inner gal- 

axies. The reprocessing galaxy would act as a controller of the inner galaxies. In the current release of 

Ptolemy, we could define the outer-level controller using the (1) dynamic dataflow domain, and (2) the 
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synchronous dataflow domain with a higher-order function mechanism that recompiles inner galaxies 

before invoking them. Two new computational models are being developed and investigated to serve as 

outer controller systems: (1) a finite-state machine domain, at U.C. Berkeley, and (2) an integrated pro- 

cessing and understanding of signals domain, at Boston University and U.C. Berkeley. 

At the 1994 RASSP Conference, Joseph Winograd and Hamid Nawab from Boston University 

demonstrated a standalone radar clutter analysis testbed using the Integrated Processing and Under- 

standing of Signals (IPUS) architecture to process radar data using expert knowledge encapsulated by 

computer. This was integrated into the Ptolemy environment as an IPUS domain. The IPUS domain 

has a dynamic scheduler that reacts to events (knowledge) registered in global data structures (e.g.,, 

blackboards) by local actors (e.g., knowledge sources). The IPUS domain reasons about knowledge at 

different levels of abstraction arranged in a hierarchy. Various local actors (e.g. knowledge sources) 

have been developed that can be reused in any IPUS application. 

4.2 ALGORITHM REPRESENTATION 

The representation problem in Ptolemy is mainly to raise the level of abstraction to the problem 

level and to exploit visual syntaxes to manage complexity. Our contributions have included techniques 

for improving the efficacy of visual syntaxes (higher-order functions), leveraging external tools (Mat- 

lab and Mathematica, for example), and new models of computation. 

4.2.1 Higher-Order Functions 

We designed and implemented a higher-order functions (HOF) domain in Ptolemy that functions 

as a subdomain of all other domains. This has had a major impact on the usability of visual (graphical) 

system representations for large systems. The theory and major concepts are given in [14]. 

We have developed (with help from Thomson CSF) a variety of radar applications using these 

HOF capabilities. We believe that the resulting system representations are much more intuitive and 
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maintainable than the traditional techniques based on multidimensional arrays (using up to seven 

dimensions). 

4.2.2 Leveraging External Tools 

We created a link between Matlab and Ptolemy so that stars can have their functionality expressed 

as Matlab functions and parameter values can be given as Matlab expressions. One major impact of 

this is that the full suite of graphical signal display facilities in Matlab are now available under 

Ptolemy. Moreover, quick algorithmic prototyping can now be done with an arbitrary mixture of Mat- 

lab (imperative, matrix-oriented) code, and block-diagram (declarative, signal-oriented) code. 

A similar link was created to Mathematica, which provided the ability to include symbolic manip- 

ulations in parameter specifications. SDF demonstrations of both interface haves been released with 

Ptolemy since version 0.6. 

4.2.3 Communicating Processes Domain 

We developed a "communicating processes" (CP) domain in Ptolemy. This domain has been used 

extensively for high-level modeling of a wireless multimedia network. Unfortunately, we had to aban- 

don this domain because it was built on top of the Sun Lightweight Process library, a fairly idiosyn- 

cratic thread library, and porting to more modern thread libraries proved difficult. 

4.2.4 Message Queue Domain 

We completed a "message queue" (MQ) domain, which is an experimental domain that models 

systems with highly dynamic topologies, such as telecommunications switch software. 

4.3 SCHEDULING AND CODE GENERATION FOR SYNCHRONOUS DATAFLOW 

Consistent with the RASSP focus on real-time signal processing in embedded systems, the 

Ptolemy project made several key contributions in the translation of synchronous dataflow graphs into 
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embedded software (a technique sometimes called auto-coding). There are two key elements to this 

problem: scheduling and code generation. We made major contributions in both. 

4.3.1 Scheduling of Dataflow Graphs for Efficient Synthesis 

A major result of this project is a sophisticated set of scheduling algorithms that jointly minimize 

the size of a program and the size of data memory in embedded software generated from synchronous 

dataflow graphs. These algorithms and their various ramifications have been reported in a number of 

papers, two Ph.D. theses [73][76], and the results have been collected and published in a book [1]. 

4.3.2 Hierarchical Scheduling and Code Generation 

We introduced a hierarchical scheduling framework that effectively mixes synthesized software 

and VHDL models with simulations built in other Ptolemy domains. This permits, for example, the 

environment to be modeled at a high level using one of the dataflow domains, while the system under 

design is modeled using domains that synthesize to hardware and/or software, like the VHDL and 

CG56 domain (the latter generates assembly code for Motorola DSPs). 

We demonstrated this hierarchical scheduling on a heterogeneous platform consisting of a Sun 

workstation running Solaris 2.4 and a programmable DSP on an S-bus card. These demonstrations 

incrementally compile real-time subsystems for the DSP and embed them within a non-real-time pro- 

cess running on the Unix workstation. Communication between them was asynchronous, using a 

"peek/poke" mechanism to asynchronously read and write into the DSP memory. The demonstration 

systems were acoustic modems (modems that transmit from an audio loudspeaker to an audio micro- 

phone through air). Animated, interactive signal displays were produced on the workstation, enabling 

better evaluation and understanding of the algorithms and their performance. 

The hierarchical scheduler uses common semantic properties across domains to decouple the 

designer-defined hierarchy (which is motivated by convenience and functional modularity) from parti- 
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tioning. That is, entirely disconnected subsystems can be implemented by the same hardware module 

(a processor or an ASIC). This scheduling framework makes extensive use of earlier work in Ptolemy 

with heterogeneous multiprocessor targets. 

The hierarchical scheduling mechanism permits the use of highly optimized loop scheduling tech- 

niques developed in our group. Without hierarchical scheduling, it was not possible to use these 

because they had not been designed for use in parallel systems. Because the applications are multirate, 

unless hierarchical scheduling is used, the generated code required considerably more memory than 

was available on the DSP card. Moreover, without hiearchical scheduling, scheduling time was sub- 

stantial (because a rather large precedence graph was constructed). Thus, we demonstrated that hierar- 

chical scheduling enables modular use of scheduling optimizations, and we have shown that in 

practical examples, considerable savings in embedded system memory are achieved. This work is 

reported in [52] [53]. 

One of the fundamental issues encountered in this work is that dataflow models are not fundamen- 

tally compositional. Two results are reported. First, a pragmatic approach that preserves all of the 

advantages of current algorithms is to identify designs that happen to be compositional, and treat them 

as such. A sufficient condition has been reported [51] [54] [72]. At a more fundamental level, we have 

identified how dataflow models of computation can be modified to make them compositional. That 

work is reported in [67], but this result remains theoretical. 

4.3.3 Mixing Code Generation with Simulation 

We have implemented in Ptolemy an elegant and simple architecture for compiling subsystems in 

code generation domains and invoking them within simulation domains. There are a number of poten- 

tial applications for this underlying infrastructure: 

Incremental compilation. A compute-intensive subsystem in, say, the synchronous dataflow (SDF) 
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domain can be retargeted to CGC (code generation in C) and compiled to become a single monolithic 

block in SDF. A similar capability is used to encapsulate a CG56 subsystem (which runs on the Motor- 

ola DSP56000) into an SDF block. 

Interfacing to foreign simulators. A VHDL subsystem can be analyzed to synthesize a fast customized 

C interface to a commercial VHDL simulator. 

Combining more than one code generation domain. For example, CGC can be mixed with CG56 to 

produce programs that execute concurrently on a host workstation and a DSP card. 

A fundamental problem is that dataflow systems cannot always be incrementally compiled, for the 

same reason cited above: dataflow is not compositional. Collections of dataflow actors in a domain do 

not necessarily have the same semantics as an individual actor. This problem is shared by many mod- 

ern languages, including all synchronous languages, such as Esterei, Statecharts, and Signal. We give 

fundamental results in [67], discussed further below. 

4.3.4 Guided Migration: a Retargeting Tool 

We developed a "retargeting tool" to be used to guide migration of Ptolemy-based designs from 

one implementation technology to another. We demonstrated an interface for studying differences in 

block libraries, and showed how it could be used to make the code generators for the Motorola 

DSP56000 family processors and the Texas Instruments C50 family processors more compatible. For 

example, Ptolemy contains demonstrations of different dual-tone multiple-frequency (DTMF) detec- 

tors that have been retargeted from the SDF simulation domain to the CGC, CG56, and C50 code gen- 

eration domains. We have also developed a program that recursively changes the domain of 

hierarchical designs. 
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4.4 DATAFLOW AND KAHN PROCESS NETWORKS 

Given the emphasis on dataflow modeling in signal processing circles, a natural part of the 

Ptolemy project was to investigate the limits on expressiveness. Dynamic dataflow and Kahn process 

networks are highly expressive models of computation, but pose some interesting implementation 

challenges. We have developed solutions. 

4.4.1 Dynamic Dataflow Scheduling 

A dynamic dataflow scheduler should satisfy two requirements: 

• Rl: If the dataflow graph does not contain a deadlock condition, the scheduler should not halt. 
• R2: If the dataflow graph can be executed forever in bounded memory, then the scheduler should 

be able to execute it forever in bounded memory. 

The latter is particularly important for embedded systems. 

In general, given a dataflow graph, it is undecidable whether the graph will deadlock (the halting 

problem). It is also undecidable whether the graph can be executed in bounded memory (Joe Buck 

showed in his 1993 Ph.D. thesis how to convert this problem to the halting problem). It is easy to 

define a scheduling algorithm that satisfies Rl or R2, but no scheduling algorithm can always, in finite 

time, guarantee both Rl and R2. This problem has appeared in various forms in much of the dataflow 

architecture work. 

In addition, the notion of an iteration in dataflow and process network domains has risen to the fore 

as a critical (and difficult) theoretical issue. An unambiguous definition of an iteration is necessary for 

control of a simulation, but even more importantly, for interaction between heterogeneous models of 

computation. The so-called "synchronous" methods, for example, (like Statecharts and Esterel) cannot 

be mixed (in a determinate way) with dataflow without an unambiguous definition of an iteration. An 

iteration is easy to define for the synchronous dataflow (SDF) model of computation, but for dynamic 

dataflow and process network models, the equivalent definition fails in some cases. In particular, an 
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iteration in SDF is a sequence of firings that returns the buffers in a dataflow graph to their original 

state. It is undecidable whether such an iteration exists in a dynamic dataflow or process network 

model. 

Thus, our third condition is: 

•     R3: The scheduler should execute a graph in a sequence of well-defined and determinate "steps," 
where a step is set of actor firings. 

We defined and implemented a robust and simple scheduler for the dynamic dataflow (DDF) domain in 

Ptolemy. It provably satisfies all three conditions. 

Often, the notion of a step as defined by the scheduler is not always the notion that the user wants 

to see. We define an "iteration" to be one or more steps, where the number of steps is controlled by the 

user. To permit a user to annotate a dataflow graph with the number of firings of a block that constitute 

an "iteration," we implemented an extension to the GUI and the Target object to support "pragmas" 

attached to blocks. A given Target (such as the DDFTarget) understands only certain pragmas. In the 

DDF domain, the DDFTarget understands a pragma called "firingsPerlteration." Thus, when a user 

specifies a value of this pragma for a particular block, an "iteration" has been defined. If no such value 

is specified, then an "iteration" equals a "step," the scheduler default. 

4.4.2 Process Networks Domain 

We implemented a Process Networks (PN) domain, using first the Awesim threads package, then 

the gthreads package, a POSDC thread implementation from Florida State University that is distributed 

under the GNU General Library License. Process networks are a generalization of dynamic dataflow, 

and raise a number of interesting theoretical and practical issues. These issues are resolved in the Ph.D. 

thesis of Tom Parks [77], where it is shown that runtime scheduling algorithms exist that solve unde- 

cidable problems. In particular, there are simple algorithms that will schedule a process network in 
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bounded memory if this is possible, without having to know a priori whether it is possible (this latter 

question is undecidable). 

4.5 MULTIDIMENSIONAL SIGNAL PROCESSING 

Dataflow models match one-dimensional signal processing extremely well. Communication 

between blocks (actors) is by sequences of data objects (tokens). These sequences easily represent 

one-dimensional discrete-time signals. However, they do not so easily represent multidimensional sig- 

nals. We developed a generalization to dataflow that better matches multidimensional signal process- 

ing. 

4.5.1 Multidimensional Dataflow 

We have completed an experimental "multidimensional synchronous dataflow" domain (MDSDF), 

where arcs that connect blocks represent not simple sequences of tokens, but rather two-dimensional 

orderings of tokens. This domain is well matched to multidimensional signal processing and is capable 

of representing a broader range of algorithms with static flow of control than the synchronous dataflow 

model. The real potential, however, is in parallel computation, because the model of computation 

exposes much more parallelism at a much finer granularity than the SDF model. The domain has a rich 

enough set of stars to be usable for experimentation. This work is reported in [27][79]. 

4.5.2 Sampling Lattices 

We developed a dataflow model for expressing multidimensional multirate signal processing sys- 

tems sampled on arbitrary lattices. A multidimensional signal can be sampled in many different ways. 

A straightforward extension of one-dimensional sampling results in the so-called rectangular sampling 

structure, where the samples lie on a rectangular grid. However, a more general sampling structure is a 

geometrical lattice; sampling lattices that are not rectangular can have many advantages in certain 

applications. For example, a signal sampled on a nonrectangular lattice can have a lower sampling den- 
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sity than one sampled on an equivalent rectangular lattice. For real-time processing of multidimen- 

sional signals, a lower sampling density means fewer samples to process in a given time interval. The 

standard MDSDF model suffers from the inability to model multidimensional systems sampled on 

arbitrary sampling lattices; hence, we give an extension of MDSDF that is capable of modeling such 

systems. The model we give preserves the property of static, compile-time schedulability. However, 

constructing such schedules requires the solution to some challenging problems. In particular, we 

show that an augmented set of balance equations has to be solved simultaneously in the extended 

model. The additional equations are quite different from the usual balance equations in SDF and 

MDSDF; they involve computing so-called "integer volumes" of parallelepipeds. This computation 

turns out to be an interesting number-theoretic problem, and we present several approaches for solving 

it. Finally, we present a practical example of a video sampling structure conversion system to show the 

usefulness of the generalized MDSDF model. This work is reported in the Ph.D. thesis of Praveen 

Murthy [76]. 

4.5.3 Filter Design Issues 

The design of multidimensional multirate signal processing systems, e.g., systems that change 

video formats in nonseparable ways, often require application-specific design tools. For example, in 

computing system parameters in multidimensional multirate systems can be simplified with a combi- 

nation of computational geometry, integer matrix algebra, and state-space formulations. In multiple 

dimensions, rate-changing operations are defined by a change in sampling grids. Sampling grids can 

be represented as a set of basis vectors, which can be considered as the column vectors that make up a 

sampling matrix. Mapping one sampling matrix onto another is a linear mapping represented by a 

rational matrix, called a resampling matrix. We have shown how to design two-dimensional rate 

changing systems (upsampler, filter, and downsampler in cascade) based on a geometric sketch of the 
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passband to retain. From the sketched region, we use computational geometric techniques to find the 

minimal enclosing parallelogram using a linear time and linear space algorithm we have developed. 

We then use the minimal enclosing parallelogram to compute the resampling matrix to perform the 

sampling conversion using Chen and Vaidyanathan's approach. Then, we factor the resampling matrix 

into the up-sampling and down-sampling matrices for the rate changer. The procedure will find the 

best compression rate based on a parallelogram-shaped passband. The only other admissible geometry 

is a hexagonal-shaped passband, which will always do at least as well as the parallelogram-shaped 

passband. Generalizing this approach to multiple channels will enable the graphical design of two- 

dimensional filter banks and wavelets. This work is reported in [35][36]. 

4.6 MULTIPROCESSOR TARGETS 

Embedded signal processing systems often require more than one processor to meet real-time con- 

straints. We have made some contributions in the area of automatic generation and optimization of 

multiprocessor implementations. 

4.6.1 Resynchronization 

We developed a set of algorithms for minimizing the number of synchronized communications 

between multiple processors in a multiprocessor system [25] [61] [62]. Synchronized communications 

are considerably more expensive than unsynchronized communication, requiring testing and setting 

semaphores. The algorithms are based on the observations that some synchronizations are redundant, 

since it can be algorithmically demonstrated that the semaphores will always be in the desired state, 

regardless of timing. These synchronizations can be removed. A second (complementary) method 

selectively adds synchronization operations that will then cause other synchronization operations to 

become redundant. We have proven that the problem is NP-hard, but have established a correspon- 

dence with the well-studied set-covering problem, which provides a wealth of heuristic solutions. A 
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third method converts a feed-forward dataflow graph into a strongly connected graph in such a way as 

to reduce synchronization overhead without slowing down the execution. All three methods can be 

applied as post processing optimizations to the output of any static parallel scheduling algorithm. A 

more recent extension of these algorithms considers latency constraints as well, giving provably opti- 

mal algorithms. Results are described in [23][24] [25][61][62] [63]. 

4.6.2 Targeting a Network of Workstations (NOW) Cluster 

We implemented a target in the CGC (code generation in C) domain that produces code for a 

NOW (Network of Workstations) cluster. The generated code is built on top of the active message 

abstraction, and hence is portable and potentially quite efficient. We have shown that the same set of 

parallel executables can be run on an ordinary cluster of networked workstations as well as on the spe- 

cially configured NOW. Surprisingly, initial tests resulted in faster runs on the ordinary cluster, but fur- 

ther tuning has now achieved better performance on NOW. Currently, in the Berkeley NOW cluster, 

active messages are implemented on top of TCP/IP, so there is considerable communication overhead. 

However, as that facility matures, and this overhead is removed, we will be able to track it and improve 

performance. 

4.6.3 Mercury Raceway Architecture 

We outlined the design of a tool for mapping a control and dataflow representation of a hard real- 

time signal processing application onto a Mercury RACEway multicomputing system, and are con- 

tinuing development with other funding. Low-level programming details would be hidden from the 

programmer thereby shifting the design focus to performance issues. Graphical visualization and 

manipulation capabilities will enable study of architectural trade-offs and optimizations. Tasks can be 

scheduled and partitioned among the processors either manually or automatically. The tool will handle 

most of the details involved in generating multiprocessor code, downloading the code to the target sys- 
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tem, and initializing the system for execution. Additional capabilities of the tool will allow extension 

of the default routine library by the programmer and will allow interfacing with other hardware synthe- 

sis and codesign tools. The tool will be implemented as a code generation target in Ptolemy. 

4.7 CONTROL AND SIGNAL PROCESSING 

In the early part of the project it concentrated on the computational aspects of signal processing 

systems, and thus focused on models of computation such as dataflow that are particularly well suited. 

Toward the end, the attention broadened to include control and sequential decision-making aspects of 

system design. We pursued three approaches for combining control-oriented computation with data- 

oriented computation: hierarchical concurrent finite-state machines, the synchronous/reactive model of 

computation, and dynamically evaluated higher-order functions. This work is ongoing, with the parts 

completed under this project being seminal. The following specific accomplishments are reported: 

4.7.1 The FSM Domain 

Signal processing systems perform intensive numeric computation, but they typically also have 

sophisticated control logic for sequencing the computation tasks, switching among operation modes, 

coordination, and configuration. Dataflow models are suitable for describing numeric computations. 

The finite-state machine (FSM) is an intuitive model for describing control logic with a formal, well- 

studied mathematical theory. But the basic FSM model, which is flat and sequential, is not suitable for 

describing complex concurrent control. A common solution to this problem is hierarchical FSMs, 

which extend the basic FSM model with hierarchy and concurrency. The Statecharts visual formalism 

is an example of this approach. 

We observe that FSM semantics, hierarchy, and concurrency are orthogonal semantic properties of 

Statecharts. If we take away from Statecharts the transitions that cross hierarchy boundaries, we get a 

simpler model in which FSM semantics can be cleanly separated from concurrency semantics. This 
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means that the basic FSM model can be mixed with the various concurrency models to get many mod- 

els that are only slightly weaker than Statecharts. We call this new computational model "*charts," 

where the "*" is a wildcard representing various possible concurrency models. 

We have created a preliminary implementation of this model in Ptolemy. Systems can be built by 

hierarchically nesting FSMs and concurrency models. The synchronous dataflow model is particularly 

attractive because when it is combined hierarchically with FSMs in certain ways, the combination is 

far more expressive than either SDF or FSMs alone, even though the resulting system remains finite 

state. Verification, synthesis, and optimization questions all remain decidable. We have developed a 

preliminary visual editor for state transition diagrams, which is integrated into the Ptolemy GUI so that 

a user can seamlessly traverse a hierarchical design that combines FSMs with dataflow block dia- 

grams. At present we can simulate such a mixed-model system description. We plan to add the capabil- 

ity to generate code from such systems. Preliminary results are reported in [2]. 

4.7.2 Synchronous/Reactive Modeling 

The synchronous/reactive model of computation is popular (mostly in Europe) for the design of 

real-time embedded systems. Examples of languages that use this model are Esterel, Lustre, Signal, 

and Argos. A key property of the model is that events in concurrent modules are totally ordered with 

respect to one another. This means that any two events are either simultaneous, or one unambiguously 

precedes the other. This contrasts the dataflow approach, where events are partially ordered. A second 

key property of SR languages is that simultaneous events are defined by a fixed-point equation. Fixed- 

point theory guarantees the existence of a least fixed point under certain technical conditions. 

Stephen Edwards completed his Ph.D. thesis [74], which describes a coordination language that 

combines the synchronous/reactive model with the ability to assemble systems from heterogeneous 

pieces (i.e., described in a variety of languages). It presents a mathematical framework for dealing with 
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zero-delay-induced paradoxes and presents a way to schedule systems with feedback. The abstract of 

the thesis effectively summarizes the results: 

"The need for new languages and paradigms for designing software for embedded computing 
systems continues to grow as general-purpose microcontrollers become faster and cheaper. 
Many of these systems need precise control over when things happen, yet few languages pro- 
vide this facility. Another major challenge is handling the growing complexity of these sys- 
tems. 

In this dissertation, I present a new model of computation for embedded system software that 
is the first to fuse precise control over timing with the ability to build systems from heteroge- 
neous pieces. It combines the synchronous model of time (used in languages such as Esterel) 
with the hierarchical heterogeneity of the Ptolemy system. Heterogeneity addresses the com- 
plexity problem by allowing each subsystem to be designed using the best language. 
My two major contributions are the formal semantics of this model and an efficient, predict- 
able execution scheme for it. Dealing with zero-delay feedback loops, a side-effect of the zero- 
delay assumption needed for synchrony, is the semantic challenge, and I solve it with a fixed- 
point scheme that guarantees all systems are deterministic by construction. The execution 
scheme I present is provably correct and eliminates run-time scheduling overhead by making 
all decisions before the system is run. 
I present results that show my model of computation is both efficient and can be used to imple- 
ment practical systems. It is my hope that these ideas will be used in the future to make design- 
ing complex time-critical embedded software easier and less error-prone." 

SR languages have been used in control-intensive, safety-critical embedded system designs such as 

aircraft and nuclear power-plant control. Their formal properties ensure determinacy and bounded 

memory, and enable extensive verification. They appear to be an attractive model for certain kinds of 

signal processing systems. 

Stephen constructed an SR domain in Ptolemy that differs from standard SR languages by allow- 

ing modules to be designed in some foreign model of computation. This is consistent with the "hierar- 

chical heterogeneity" principle of Ptolemy. This domain has a number of practical and theoretical 

challenges that result from this heterogeneity. In particular, the information-hiding principle used in 

Ptolemy occludes certain important information about modules that is normally exploited in compiling 

these languages. We have had to adapt the theory and compilation techniques to avoid violating this 

information hiding. 
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Stephen developed a dynamic execution policy for the SR domain in Ptolemy and proved that it 

always converges to the minimal fixed point. We have a theoretical bound on the number of steps 

required to reach this fixed point (order N 2, where N is the number of actors in the graph) and have 

been developing heuristics that fall well below this bound. 

The first nontrivial application of the synchronous/reactive (SR) domain involved the interpreta- 

tion of MIDI control signals to control sound synthesis. This application provided a suitable represen- 

tative of systems that combine intensive signal processing with intensive control logic. A Midi 

keyboard interfaced to the serial port of a Sparc 10 provided the control sequence. The Midi keyboard 

was capable of providing highly complex and time-sensitive control signals, thus representing a 

demanding system environment. The Synchronous Reactive domain and SDF (synchronous dataflow) 

domains were used to create a synthesizer using the Sparc 10 to generate sound, and the keyboard to 

trigger events. 

4.7.3 Dynamically Evaluated Higher-Order Functions 

We prototyped C++ and Tel interfaces to the dynamic higher-order functions mechanism, in 

which we dynamically switch in a replacement block. This can be used to implement hierarchical state 

machines (with no cross-hierarchy state transitions), and dynamically evaluated higher-order func- 

tions. For example, we can implement conditionals (like if-then-else) within a dataflow actor as a HOF 

by using the C++ interface. 

4.7.4 Open Problems 

Demonstration systems have been constructed where modules written in the synchronous/reactive 

domain are embedded within both discrete event (DE) and synchronous dataflow (SDF) systems. We 

have observed that while the use of SDF in this context may be adequate for hardware design, it has 

serious inefficiencies for embedded software design. Moreover, the problems are fundamental to the 
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embedding of any technique where events are totally ordered (as in SR) within dataflow graphs, where 

events are only partially ordered. 

The nature of the problem is as follows: to preserve determinacy, the dataflow model does not per- 

mit actors to test their input ports for the presence of a token, nor to take a branch depending on 

whether a token is present. However, a controller often wants to monitor a signal, say an exception sig- 

nal, and branch in response to that signal. In the SDF embedding, that signal must always be present, 

using for example a Boolean FALSE to indicate that an exception has not occurred, and a Boolean 

TRUE to indicate that an exception has occurred. For circuit design, where this signal may represent a 

voltage on a wire, there is no inefficiency implied here. For software, however, the production and con- 

sumption of a large number of FALSE tokens that indicate that nothing interesting is happening can be 

quite costly. It is an ongoing effort in our group to attach reasonable semantics to this sort of combina- 

tion. 

4.8 FORMAL METHODS 

The focus of the work on formal methods was to understand models of computation that can be 

applied to system-level design of embedded signal processing systems. The major focus, therefore, 

was on concurrent models and models that coexist well with huge computational loads and real-time 

constraints. 

4.8.1 A Semantic Framework for Comparing Models of Computation 

In collaboration with Professor Alberto Sangiovanni-Vincentelli, we developed a denotational 

framework (a "meta model") within which certain properties of models of computation can be under- 

stood and compared. It describes concurrent processes in general terms as sets of possible behaviors. 

Compositions of processes are given as intersections of their behaviors. The interaction between pro- 

cesses is through signals, which are collections of events. A system is determinate if, given the con- 
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straints imposed by the inputs, there are exactly one or exactly zero behaviors. Each event is a value- 

tag pair, where the tags can come from a partially ordered or totally ordered set. Timed models are 

where the set of tags is totally ordered. Synchronous events share the same tag, and synchronous sig- 

nals contain events with the same set of tags. Synchronous systems contain synchronous signals. Strict 

causality (in timed systems) and continuity (in untimed systems) ensure determinacy under certain 

technical conditions. The framework is used to compare certain essential features of various models of 

computation, including Kahn process networks, dataflow, sequential processes, concurrent sequential 

processes with rendezvous, Petri nets, concrete data structures, and discrete-event systems. Details are 

reported in [44] [66]. 

4.8.2 Semantics of Discrete-Event Systems 

In what could be a significant breakthrough, we followed up on a suggestion by Gerard Berry of 

INRIA to develop a semantic model of discrete-event systems (such as that used in VHDL, Verflog, 

and the discrete-event domain in Ptolemy). This model provides a complete metric space for signals in 

such systems, thereby enabling the use of standard, well-established mathematical methods (most 

notably the Banach fixed point theorem) to study issues such as determinacy. This work is included in 

[66]. 

4.8.3 Semantics of Dataflow 

We formally characterized the previously informal relationship between dataflow and Kahn pro- 

cess networks. In KPNs, a "process" is a functional mapping from input sequences to output 

sequences, where the function is constrained to be continuous in a complete partial order (CPO). The 

CPO is based on the so-called "prefix order." Dataflow is a special case where the process is con- 

structed as a sequence of "firings" where a firing is an atomic quantum of computation. The difficulty 

in the past has been in formally defining the constraints on the firing function and the firing rules 
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(which indicate when a firing can occur) such that the resulting process is continuous. Continuity is 

desirable because it ensures determinacy. 

The firing rales can be characterized as a set of signals (tuples of sequences of tokens). When one 

of the firing rules is a prefix of the input to the process, then the firing function "fires," consuming the 

prefix and producing output tokens. The process is then recursively applied to the remaining input 

tokens. If no two members of the firing rule set are "joinable" (meaning that they have an upper bound 

in the CPO), and the firing function is continuous, then the process will be continuous. A key part of 

the result is showing that the recursive definition of the process in terms of the firing functions is sensi- 

ble and determinate. This can be done by defining a CPO on functions and showing that the process 

can be given in terms of the firing function by a continuous functional (which maps functions into 

functions). 

These results are reported in [67]. 

4.8.4 Dataflow and Functional Languages 

In [14], we reviewed a mathematical theory of dataflow based on partial orders, and connect this 

theory to the functional languages and dataflow architectures communities. A central idea is that a 

dataflow process consists of repeated applications of dataflow firings, and that this can be described by 

the higher-order function F = map(/), where/is a function describing a single actor firing. The "map" 

higher-order function applies f to a stream input. This notation formalizes a number of concepts that 

have not been clear (at least not to us). We have determined, for example, that if "/' is "sequential" (in 

a very technical sense), then "F" is sequential. Sequentiality implies determinacy of a network of such 

functions. The next broader class of functions that we know of beyond the sequential functions, called 

"stable functions," also imply determinacy. However, we have found a counterexample where F is not 

stable even though/is. For this counterexample, F is not determinate. Thus, we believe that sequential 
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functions characterize, in a very fundamental sense, those functions whose composition abstracts to a 

determinate function. The class of sequential functions, as it happens, is exactly the class implemented 

by the Ptolemy Dynamic Dataflow (DDF) domain. 
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5. Software 

The Ptolemy software serves as both a laboratory for experimentation and a mechanism for dis- 

seminating results. During the course of the project, we completed three major software releases and 

several minor ones. The major enhancements of each release are summarized below. Version numbers 

begin with "0" to emphasize that this is research software, not a commercial product. 

5.1 INFORMATION DISSEMINATION POLICY 

We set up a Web site, http://ptolemy.eecs.berkeley.edu, that was used to distribute all software 

(including source code) and documentation (in PostScript, HTML and PDF, together with updated 

summary sheets, answers to frequently asked questions, a quick tour, and a tutorial). We set up a 

Usenet news group called comp.soft-sys.ptolemy and a mailing list ptolemy-hack- 

ers@ptolemy.eecs.berkeley.edu. Postings to the mailing list are cross-posted to the news group. Post- 

ings are archived and searchable from our World Wide Web site. 

5.2 PTOLEMY 0.5 (FEBRUARY 1994) 

5.2.1 Major New Features 

Major features introduced in the 0.5 version include: 

Greatly improved documentation (see below). 
Extensible, animated, interactive GUI based on Tcl/Tk. 
The boolean dataflow domain. 
VHDL code generation. 
Silage code generation. 
Fast discrete-event scheduling. 
A communicating processes domain for event-driven simulation of hardware systems. 
Fixed-point simulation. 
Matrix data types and functional blocks. 

5.2.2 Documentation 

With the objective of making Ptolemy more usable both within Berkeley and outside, we com- 
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pletely rewrote the documentation. The 0.4.1 version had been written using troff. The 0.5 version was 

converted to use FrameMaker, and used a more tutorial, more narrative style with extensive use of 

graphics. The complete manual, called "The Almagest," is divided into four volumes: 

• The User's Manual 
• The Star Atlas 
• The Programmer's Manual 
• The Kernel Manual 

The first two are intended for users who will not be writing code to extend the system. The third is for 

users who will be writing new functional blocks (called stars), and the fourth is for users who will be 

extending the system in more fundamental ways, such as by adding new models of computation or new 

synthesis tools. 

The User's manual and Kernel manual have both been converted to HTML for on-line, hypertext 

access. Also providing improved on-line documentation, two self-guided tours of Ptolemy are distrib- 

uted with the system: 

• A "Quick Tour" takes the user through the features of the more mature Ptolemy domains. 
• A "What's New" tour guides the user through an overview of what has been added in each new 

version of Ptolemy. 

5.3 PTINY 0.5 (APRIL 1994) 

The "Ptiny" release is a demonstration subset that is easy to install and requires much less disk 

space than the full system. A number of our regular users started with this version. Moreover, this ver- 

sion is designed to fully support our instructional uses of Ptolemy. 

5.4 PTOLEMY 0.5.1 (SEPTEMBER 1994) 

5.4.1 Major New Features 

Major features introduced in the 0.5.1 version include: 

A Matlab interface. 
• Higher-order functions. 
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• Multidimensional synchronous dataflow. 
• Initializable delays. 

5.5 PTOLEMY 0.5.2 (MAY 1995) 

The Ptolemy 0.5.2 release, which consist of approximately 2000 files containing 300,000 lines and 

8 Mb of source code, was distributed in May of 1995. 

5.5.7 Major New Features 

This was an incremental release containing three major features: 

• Greatly enhanced simulation speed, 
• A library of interactive graphical widgets, and 
• Support for higher-order functions in all domains. 

5.5.2 Platforms 

Internally developed: Sun Sparc (SunOS and Solaris), HP (HP/UX), and SGI (Irix). 

Contributed by outside users: Dec Alpha (Ultrix), PC (Linux), IBM RS/6000 (AIX), and Power 

PC (AIX). 

Additional external ports: DecStation (Ultrix) and PC (NetBSD). 

5.6 PTOLEMY 0.6 (APRIL 1996) 

The Ptolemy 0.6 release consists of approximately 3000 files containing 400,000 lines and 9 Mb of 

source code (compressed). 

5.6.1 Domains 

• Multidimensional synchronous dataflow, MDSDF. 
• New functional VHDL domain. 
• Process networks, PN. 
• Extension of Boolean dataflow (BDF) to integer-controlled dataflow (IDF). 

5.6.2 Schedulers 

• Loop scheduler. 
• Dynamic dataflow scheduler that maintains bounded memory. 
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• Partitioning SDF applications into multiple VHDL hardware modules. 
• Buffer-optimal loop scheduler for acyclic SDF graphs. 
• Latency constrained resynchronization (LCR) algorithm for 2 processor systems that is capable of 

handling delays. 

5.6.3 Automatic Code Generation 

• Synthesis of parallel code for network of workstations (NOW). 
• Multi-lingual code generation (C-based wormholes). 
• Tunable VHDL code generation (sequential or synthesizable). 
• Incrementally compiled code generation subsystems. 

5.6.4 Visualization 

• Interfaces to a freely available graph visualization program: printDot - outputs a galaxy hierarchy 
in dotty format, printClusterDot - outputs the galaxy in it's clustered form. 

• Tcl/Tk versions of Gantt chart and logic analyzer. 
• Interface to Tycho (see below). 

5.6.5 Ptolemy Infrastructure 

Tel parameter expression parser. 
Ptolemy Makefile redesign. 
Matlab Tel interface. 
Tcl/Mathematica interface. 
First-cut at design-methodology management. 
Code generation wormholes. 
Portable scheduler file format. 
Heterogeneous code generation (VHDL, 56K, C). 
C++ documentation generation system. 
HTML documentation of Ptolemy stars. 
File datatype. 
Automatic generation of Ptcl scripts from block diagrams. 
New iterator classes for various kernel classes. 
Itcl incorporation, an object-oriented extension to Tcl/Tk. 
Script for creating custom versions of Ptolemy. 

5.6.6 Platforms 

Platforms that we distribute binaries for: Solaris2.4, HPUX-10.01, SunOS4.1.3. 

Platforms that Ptolemy 0.6 has been compiled for: IBM AIX3.2.5, DEC Alpha OSF/1 V3.2, 

FreeBSD 2.1-Stable, Irix5.3, Irix6.x, HPUX9.X, Linux Slackware3.0, Solaris2.5, HPUX10.01, HP CC. 
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5.7 PTOLEMY 0.7 (JUNE 1997) 

Ptolemy 0.7 and Tycho 0.2 were released on June 13th, 1997. 

5.7.1 Domains 

• FSM — finite state machines 
• SR — synchronous/reactive. 

5.7.2 Schedulers 

• An optimized acyclic loop scheduler. This scheduler does joint code/data minimization; it gener- 
ates single appearance schedules optimized for buffer memory usage. It is useful in code genera- 
tion, especially in assembly language code generation for embedded signal processors which have 
limited program and data memory. 

5.7.3 Code Generation 

Code generation for the TIC50 DSP, CGC50. 
UltraSparc VIS (visual instruction set) code generation. 
Real-time CD-quality audio on Ultrasparc workstations. 
Synthesis of C code that is dynamically loaded into Tycho. 
Improved user interfaces (based on Tycho) for synthesized C programs. 
Visualization of implementation costs. 

5.7.4 Visualization 

• Integrated HTML documentation of functional blocks. 
• Tycho 0.2 (see below). 

5.7.5 Ptolemy Infrastructure 

• A revamped type system. 
• Retargeting tool. 
• Scripted higher-order functions. 

5.7.6 Platforms 

We distribute binaries for Solaris2.5.1, Solaris 2.4, HPUX10.20, HPUX9.X, SunOS4.1.3, and DEC 

Alpha OSF1. Ptolemy has been compiled for a number of other platforms by users outside Berkeley. 

5.7.7 Documentation 

The User's Manual is about 500 pages with about 440 figures, tables and equations. The User's 
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Manual is available in HTML, PDF and PostScript from the Ptolemy Web page. In addition, there is a 

Programmer's Manual and Kernel Manual. 

5.8 TYCHO 

Tycho is an object-oriented syntax manager with an underlying heterogeneous technical rationale. 

It provides a number of editors and graphical widgets in an extensible, reusable framework. The edi- 

tors for textual syntaxes are modeled after emacs in the sense the emacs key bindings are used when- 

ever possible. However, they make more extensive use of menus, windows, and dialogs than emacs. 

Also, the intent is that visual editors and visualization tools will be fully integrated, something that 

would be difficult to accomplish with emacs in its current form. Editors for visual syntaxes will be 

more diverse. The system documentation is integrated, using a hypertext system compatible with the 

World Wide Web. 

Tycho was originally conceived for use with Ptolemy system, but it has grown into a system that is 

useful on its own. Tycho has been used extensively in the development of the Tycho software itself. 

Tycho is written primarily in ltd, also called [incr Tel], developed by Michael McLennan of 

AT&T. Itcl is an object-oriented extension of Tel, a "tool command language" written by John Ouster- 

hout of U.C. Berkeley, now under continued development at Sun Microsystems. The window toolkit 

Tk and its object-oriented extension Itk are also used extensively. 

5.8.1 Objectives 

• To build a genuinely object-oriented user interface, where multiple visual syntaxes can be com- 
bined, and application-specific visual syntaxes can be constructed. 

• To provide an extensible framework for experimentation with visual syntaxes, where mundane 
tasks such as documentation, font management, color management, and dialogs with the user 

are built using a shared, common infrastructure. 

• To extend the non dogmatic nature of the Ptolemy kernel (which supports multiple semantic mod- 
els) to the user interface (which will support multiple syntactic models). 

• To experiment with design visualization, broadening the perspective beyond a schematic or block- 
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diagram perspective of Ptolemy, and exploring new visual and mixed visual/textual syntaxes for 
design representation and understanding. 

• To leverage off work in the Tcl/Tk community to get portable (Unix, Microsoft Windows PCs and 
Apple Macintoshes) code. 

• To design a sophisticated, extensible, interactive documentation system. 
One of the key principles in Tycho is that anything can have a hyperlink to anything else. Docu- 

mentation will have links to source code, and vice versa. Visual editors will have links to textual edi- 

tors. And specialized displays can be created for any form of data. These displays, of course, are also 

connected by hyperlinks. 

An interim mechanism is provided where Tycho forms a subsystem within the much older visual 

editor for Ptolemy called "pigi" (which stands for Ptolemy interactive graphical interface). 

5.8.2 Tycho 0.1 Release (March 1996) 

Tycho 0.1 was released with Ptolemy 0.6. It was still a very preliminary system. It included: 

Visual editors and displays for various types of graphs. 
Syntax-sensitive text editors for ltd, HTML, C, C++, Ptlang (Ptolemy star) files, Java and Esterel. 
Interactive shells communicating with Tel, Matlab, Mathematica. 
Graphical editors 
Integrated, HTML-based documentation. 
Indexes and index browsers. 
A family of dialog windows. 
Context sensitive spell checker. 
Font and color management system. 
Error handling with a stack display. 
Auto-save. 
Some elementary data structures: Stack, CircularList, Graph, DirectedAcyclicGraph, Forest. 

5.8.3 Tycho 0.1.1 Release (December 1996) 

Tycho 0.1.1 was released on December 17, 1996. This was an interim release that improved per- 

formance and added many new features. Most notably: 

• View/Display er architecture. 
• Slate object for managing composite graphical objects. 
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Popup menus (to complement pre-existing pull-down menus) 
Menu-bar object. 
Glimpse Index Browser. 
Graphical Itcl Class browser 
Preferences manager 
Exec class which can be used to run remote programs like make. 
Print dialog. 
Java syntax sensitive editor. 
Windows NT port. 
Hierarchical indexes. 

5.8.4 Tycho 0.2 Release (June 1997) 

Tycho 0.2 was released with Ptolemy 0.7. Significant new features: 

Java/Tycho interface 
Compilation and dynamic loading of C modules at runtime. 
Improved preferences manager. 
An interface to C,C++ and Java compilers. 
Interfaces to SCCS and RCS revision control systems. 
An interface to the Glimpse index browser, which can rapidly search large directory trees. 
A graphical Tel profiler. 
A source code documentation system and browser. 
A Tycho Information Model (TIM) architecture. 
A time-slice scheduler for dynamically linked C modules. 

5.9 TMATH 

Ptolemy 0.7 comes with an interface to Matlab 4.2 and Mathematica 2.2, but Ptolemy must be 

recompiled for a user to access the interface. Since the 0.7 release, Brian Evans (UT Austin) has 

upgraded the interface to be compatible with Matlab 4.2 and 5.0 as well as Mathematica 2.2 and 3.0, 

which will likely be released in the next version of Ptolemy and as a patch to the current version. In the 

meantime, Brian has spun off the interface to Matlab and Mathematica from C++ and Tel as a separate 

tool called TMath (version 0.2). 

The TMath package is an extension to Tel that allows Tel 7.x to control Matlab and Mathematica 

processes and to evaluate Matlab and Mathematica commands, either through scripts or interactive 
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sessions. It works with Matlab 4.2 and 5.0 as well as Mathematica 2.2 and 3.0. TMath provides: 

• two new Tel commands matlab and mathematica, 
• a framework for registering Tel commands implemented as C++ methods, 
• C++ interfaces for Matlab and Mathematica, and 

C++ objects to control multiple Matlab and Mathematica processes. TMath will work on all of the 

architectures supported by the Ptolemy software environment. For more information about TMath, see 

http://www.ece.utexas.edu/~bevans/projects/tmath.html 
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